Hypoxia–ischemia is not an antecedent of most preterm brain damage: the illusion of validity
نویسندگان
چکیده
Brain injury in preterm newborn infants is often attributed to hypoxia-ischemia even when neither hypoxia nor ischemia is documented, and many causative speculations are based on the same assumption. We review human and animal study contributions with their strengths and limitations, and conclude that - despite all the work done in human fetal neuropathology and developmental models in animals - the evidence remains unconvincing that hypoxemia, in the fetus or newborn infant, contributes appreciably to any encephalopathy of prematurity. Giving an inappropriate causal name to a disorder potentially limits the options for change, should our understanding of the etiologies advance. The only observationally-based title we think appropriate is 'encephalopathy of prematurity'. Future pathophysiological research should probably include appropriately designed epidemiology studies, highly active developmental processes, infection and other inflammatory stimuli, the immature immune system, long chain fatty acids and their transporters, and growth (neurotrophic) factors. WHAT THIS PAPER ADDS Fetal hypoxemia is rarely documented in brain injury studies. Animal studies fail to consider human-animal fetal anatomical differences. Putative treatments from animal models have not found clinical use. Observational studies constitute the only approach to etiological understanding. No convincing evidence yet that hypoxemia injures preterm brain. Encephalopathy of prematurity is preferable to hypoxia-ischemia as a term for this disorder. Encephalopathy of prematurity is preferable to hypoxia-ischemia as a term for this disorder.
منابع مشابه
Neuronal Cell Reconstruction with Umbilical Cord Blood Cells in the Brain Hypoxia-Ischemia
Background: Brain hypoxia-ischemia is a human neonatal injury that is considered a candidate for stem cell therapy. Methods: The possible therapeutic potential of human umbilical cord blood (HUCB) stem cells was evaluated in 14-day-old rats subjected to the right common carotid occlusion, a model of neonatal brain hypoxia-ischemia. Seven days after hypoxia-ischemia, rats received either saline ...
متن کاملThe Role of Peroxisome Proliferator Activator Receptor Alpha in Cerebral Ischemia-Reperfusion Injury; a Review Study
Peroxisome proliferator-activated receptor alpha (PPAR-α), which belongs to the nuclear receptor family of ligand-activated transcription factors, was first described as gene regulators for metabolic pathways including lipid metabolism, insulin sensitivity, and glucose homeostasis. Were raised. This nuclear receptor is widely expressed in various tissues, providing a wide range of effects to st...
متن کاملLongitudinal MR assessment of hypoxic ischemic injury in the immature rat brain.
Extremely preterm infants commonly show brain injury with long-term structural and functional consequences. Three-day-old (P3) rat pups share some similarities in terms of cerebral development with the very preterm infant (born at 24-28 weeks of gestation). The aim of this study was to assess longitudinally the cerebral structural and metabolic changes resulting from a moderate neonatal hypoxic...
متن کاملProteomic analysis of immature rat pups brain in response to hypoxia and ischemia challenge.
Hypoxia and ischemia significantly affects perinatal brain development, even worse in preterm infants. However, the details of the mechanism leading to permanent brain damage after hypoxia-ischemia attack have not been fully elucidated. Proteomics could provide insight into the potential mechanism and help to promote the clinical treatment. In this study, quantitative analysis was performed 24 ...
متن کاملInhibition of neuroinflammation prevents injury to the serotonergic network after hypoxia-ischemia in the immature rat brain.
The phenotypic identities and characterization of neural networks disrupted after neonatal hypoxia-ischemia (HI) in the preterm brain remain to be elucidated. Interruption of the central serotonergic (5-hydroxytryptamine [5-HT]) system can lead to numerous functional deficits, many of which match those in human preterm neonates exposed to HI. How the central serotonergic network is damaged afte...
متن کامل